

ОТЧЕТ О ПРИМЕНЕНИИ

Водоподготовка и очистка сточных вод

Измерение уровня шлама во вторичных отстойниках на станции очистки городских сточных вод

- Предотвращение выноса шлама в очищенные сточные воды
- Высокая эксплуатационная безопасность благодаря постоянному мониторингу отстаивания и раздела фаз сточных вод/шлама
- Комплексное решение, состоящее из оптической (БИК) системы измерения осадка и беспроводной системы для передачи данных

1. Введение

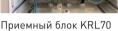
В эксплуатации Ассоциации по бытовым сточным водам (GAV) в г. Амстеттен, Австрия, находится канализационное хозяйство и соответствующие очистные сооружения. Особенностью современного предприятия является интегрированное производство биогаза. Оно самостоятельно обеспечивает себя энергией, оптимизировано с точки зрения энергоэффективности с одновременной нитрификацией и денитрификацией и предусмотрено для объема сточных вод в расчете на 150 000 человек.

2. Требования к измерениям

Чтобы гарантировать повышенную надежность процесса на заключительном этапе очистки перед сбросом, оператору необходимо контролировать содержание шлама, собранного в четырех вторичных отстойниках, через которые продукт проходит горизонтально. Целью является предотвращение избытка шлама (вынос шлама) и защита сливного фильтра. Для этого необходимо постоянно измерять раздел фаз между осадком и очищенными сточными водами, расположенными над ним. На основании измеренных значений откачивается шлам. Кроме того, в диспетчерском пункте должно автоматически сработать оповещение, если при измерении уровня шлама указанные пределы превышены.

3. Решение от компании KROHNE

После нескольких месяцев сравнительных испытаний ультразвуковой технологии измерения от конкурентов оператор принял решение в пользу оптической системы измерения шлама OPTISYS SLM 2100. Система KROHNE на базе светодиодов в ближней ИК-области спектра обнаруживает все фазы шлама и обеспечивает точные измерения концентрации и уровня шлама. Таким образом, возможно в непрерывном режиме измерять уровень шлама (отслеживание зоны) и тем самым контролировать одну определенную "зону" (например, при управлении насосами для откачки шлама). Заказчик использует измерительную систему во всех четырех вторичных отстойниках.


OPTISYS SLM 2100 крепится к рейкам скребкового механизма с помощью держателя, поставляемого фирмой KROHNE. Сигнал 4...20 мА передается в диспетчерский пункт с помощью технологии удаленной передачи данных Phoenix Contact. Измерительные системы сообщаются с безлицензионной беспроводной системой KRL 70. Передающая подстанция данной системы Radioline была предварительно смонтирована на скребковом механизме с беспроводными модулями и модулями входа/выхода в водонепроницаемых коробах (IP68). Кроме того, соответствующие модули также были централизованно установлены в диспетчерском пункте в качестве приемных подстанций. Беспроводная технология легко вводится в эксплуатацию путем поворота регулирующей ручки с накаткой на модуле. Программирование не требуется.

OPTISYS SLM 2100 и KRL 70 на скребковом механизме

Антенна приемного блока, устанавливаемая на здании

Измерение уровня шлама

Беспроводные модули и модули входа/ выхода для передающего блока KRL70 на скребке

4. Преимущества для заказчика

Комбинированное решение, состоящее из системы измерения шлама и беспроводной связи, делает контроль за процессом осаждения во вторичных отстойниках безопасным и бесперебойным. Благодаря надежной удаленной передаче данных измеренные значения поступают в диспетчерский пункт в режиме реального времени. Образование шлама постоянно оптимизируется. Даже при увеличенной подаче физическим способом оператор может предотвратить попадание шлама в поток очищенных сточных вод. Если пределы превышены, измерительное решение подает предупредительный сигнал и шлам быстро удаляется.

В отличие от уровнемеров для ультразвукового измерения шлама, полученных согласно результатам сравнительных испытаний технология со светодиодами в ближней ИК-области спектра в OPTISYS SLM 2010 не вызывает возврат эхо-сигналов от стенок резервуара. Кроме того, отсутствуют сигналы, вызванные наличием мелких фракций или плавающим осадком, которые могут стать причиной некорректных измерений. Комбинация, состоящая из OPTISYS SLM 2100 и KRL 70, является лишь одним из нескольких отраслевых партнерских решений, предлагаемых KROHNE и Phoenix Contact для отрасли водоснабжения и очистки сточных вод.

5. Используемые приборы

OPTISYS SLM 2100

- Оптическая система уровня шлама
- Встроенная электроника: 2 выхода 4...20 мА, 3 релейных выхода, предельные выключатели
- 3 режима измерения для профиля осадка, уровня шлама/мелких фракций и отслеживания определенной зоны

KRL 70

- Безлицензионная свободно конфигурируемая беспроводная система передачи данных
- Беспроводные модули и модули входа/выхода, предварительно смонтированные в пылевлагозащищенных корпусах (ІР68)
- Встроенный Modbus (интерфейс RS 232/RS 485); 4 входа/выхода на модуль

Контактная информация

Интересует информация об этих и иных применениях?

Требуется техническая поддержка по конкретному применению? application@krohne.com

Посетите наш веб-сайт для ознакомления с перечнем актуальной контактной информации и адресов компании KROHNE.

